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Abstract— The inflation of an isotropic, nonlinear elastic membrane by means of a volume inde-
pendent hydrostatic pressure is studied. In particular, we consider annular membranes which, on
the inner boundary, have been subjected to an axial twist and a displacement normal to the plane
of the membrane, with the outer boundary fixed. A direct two-dimensional approach is adopted
and by introducing a relaxed strain-energy function the occurrence of wrinkled solutions is
considered. The governing equations are found to reduce to a system of first order differential
equations, which are then solved numerically for a Mooney-Rivlin material, over a range of
boundary value problems.

1. INTRODUCTION

In a recent paper Roxburgh er al. (1995) considered the problem of determining the
nonlinear elastic deformation of an isotropic annular membrane, which had been subjected
to a transverse displacement and axial twist at the inner boundary, with the outer boundary
being fixed. In general, whenever twisting phenomena are introduced the membrane surface
will become wrinkled, see for example the paper by Li and Steigmann (1993) which
considered the problem in the absence of a transverse displacement. These wrinkled solu-
tions correspond to regions of compressive stress, for which the standard membrane strain-
energy functions cannot be applied. This problem was addressed most recently by Pipkin
(1986a) and Steigmann (1990) who showed that by introducing a ‘relaxed’ form of the
strain-energy function, in effect the quasiconvexification of the strain-energy function, the
resulting deformation minimizes the energy functional and thus can furnish the equilibrium
solution. In the above papers by Roxburgh ez a/. (1995) and Li and Steigmann (1993) the
effect of pressure was ignored and the aim of this paper is to extend these results by allowing
for the inclusion of a volume-independent hydrostatic pressure. Such a problem could arise
in the suspension of an automobile, where a rubber seal is used to enclose lubricating fluid
between an inner strut and an outer jacket, which can slip and twist relative to one another.

Here we closely follow the approach adopted in the previous paper by Roxburgh ez
al. (1995) and note that while a brief review of the results contained therein is given, we
refer back to this paper for further details. We take the standard direct two-dimensional
approach to membrane theory, as proposed by Green et a/. (1965) and Steigmann (1990),
and consider the membrane to be initially planar. The membrane is then subjected to a
radial prestretch and the inner boundary twisted and transversely displaced, while the outer
boundary is kept fixed. This twisting means that the principal stretch directions can no
longer be derived from simple geometry and that their values cannot be expressed in a
compact form. A hydrostatic pressure p is then introduced and the equations of equilibrium
are derived. Whenever a pressure is considered in problems of this type, there may be two
or more solutions which satisfy the given boundary value problem ; see for example Beatty
(1987), Klingbeil and Shield (1964) and Khayat ez al. (1992). It is found in general, that
one of the possible solutions has principal stretches which are considerably smaller than
the other solutions, if they occur. It is this solution with the smaller strains which would
first occur on a path of pressure loading from the pressure free case, and so is the solution
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of primary interest. The larger strain solutions can only be reached on a path of pressure
unloading after the pressure has been initially increased up to some critical value. However
the principal stretches introduced by such a process are so large that they cannot be
modelled accurately by the generally accepted constitutive relations used in the current
literature ; see Ogden (1984) for a discussion on the domains of confidence for several
commonly used forms. We therefore restrict our attention to studying the primary inflation
curve. Klingbeil and Shield (1964) circumvented this uniqueness problem by taking the
radial principal stretch at the pole to parameterize the deformations instead of the pressure.
The authors did not attempt to satisfy fixed boundary conditions at the outer edge of the
disk, as opposed to the case here, and as such a similar approach would not be applicable
here.

The approach adopted here is to consider a quasi-static pressure loading from the
deformed state with no pressure present, for a given boundary value problem. In order to
obtain explicit results we consider a Mooney—Rivlin material, which is known to hold only
for maximum stretches of around 3. In this significant range the uniqueness problems
outlined above are found not to occur. The numerical method used to solve the governing
equations could easily be adapted for other strain-energy functions, and the full behaviour
of all the possible solution branches investigated. However as can be seen from papers such
as Klingbeil and Shield (1964) and Fulton and Simmonds (1986) appropriate choices of
strain-energy function for membranes involving large stretches are not obvious.

For the Mooney—Rivlin material a range of problems are considered and solved
numerically by means of a finite difference scheme, after introducing a suitable non-
dimensional form for the governing equations. The results obtained are then displayed
graphically and discussed in Section 4.

2. BASIC EQUATIONS AND NOTATION

We employ the direct two-dimensional approach proposed by Green ef al. (1965) to
describe the deformation of a nonlinear, isotropic hyperelastic membrane. The membrane
is taken to occupy the region G, in a two-dimensional Euclidean space, in its reference
configuration, which here is taken to be the undeformed configuration. Convected Gauss
coordinates 6% (x = 1, 2) are chosen, so that a material point in G, with position vector
R(6', 6°), will under a given deformation be mapped to the position r(f', ) lying on the
deformed surface G of a three-dimensional Euclidean space. This induces a natural basis
in the deformed configuration G

a,=r, o=12 (1)

where (), = 0()/20°, which span the tangent plane of the deformed surface at r, provided
r; xr, # 0. We note that in the following the summation convention is assumed, unless
otherwise stated, and that Greek indices may take the values {1, 2} while Latin indices may
take the values {1, 2, 3}. The metric tensor corresponding to the basis in eqn (1) has
components

aa/f =a," aﬁ’ (2)
while a unit normal to the deformed surface at r is

a, xa,
33 =

&)

>
172

where a = det (a,). Provided that @ > 0, we can uniquely determine the dual basis by
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a*ra, =0;5 da’=a"a" a =da’a, 4
where 85 is the Kronecker delta. Similarly, on the undeformed surface G, we can define

Az = R,a(: Ao(/i = Aa 'Aﬂa A = det (Aaﬁ) > 0,

A xA,
A3 = ;
AI/Z

. ATA =8, A% = AT-AL )

Following Steigmann (1990), the deformation gradient # may be written as
F =3, QA% (6)

where ® denotes the tensor, or dyadic, product. The Cauchy-Green stretch tensor
% = F'F, where T denotes the transpose of %, is then

€ = ay,A* @ A, %)

For hyperelastic materials having a strain-energy function #°(#) per unit area of the
reference surface, the Piola—Kirchhoff stress tensor 4 can be written in the form

T =T*®A,, 8)

where T* are the resultant stress vectors. By objectivity, or frame-indifference, of the strain-
energy function, that is #' (%) = #°(2 F) for all proper orthogonal 2, we may write

W(F) =W (%), )]

so that the resultant stress vectors T* have the form

o

T =2-—ay.
aaaﬁaﬁ

(10)

In the presence of a hydrostatic pressure p, the equilibrium equations have the form, see
Steigmann (1990),

. 0 ,
AT (AT 4 play =0, 7€ G (an

where J = (det €)'? = (a/4)"".
If we let 23,73 denote the eigenvalues of %, then we refer to 4, and 2, as the principal
stretches of the deformation. If the membrane is isotropic, eqn (9) then implies that

WAF) =W (b, 4a), (12)

where % is a symmetric function of its arguments. The principal Biot stresses 7, are then
defined as

ty = a=1,2 (13)

For the problem considered here, it is expected that the membrane may become
wrinkled in certain regions, corresponding to points where #, < 0. As was shown by Pipkin
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(1986a) necessary conditions for any deformation to be a minimizer of the total strain-
energy over the membrane are

t,z0, a=1,2 (14)

at all points, which therefore excludes any deformation which induces compressive stresses
at any point. The inequaltities (14) are also necessary for the two-dimensional Legendre—
Hadamard conditions, which in turn are necessary for the deformation to be infinitesimally
stable, in the sense of Truesdell and Noll (1965).

In an attempt to ensure that the inequalities (14) are satisfied for any deformation
Pipkin studied continuously distributed wrinkles and introduced (Pipkin 1986b) a relaxed
strain-energy function ¥, which is derived from %" in eqn (12) in the following manner.

Suppose that an initially unstressed membrane is subjected to simple tension in the 4,
direction, then the natural width in simple tension is defined to be the implicit solution for
4, from the equation

{41, 72) =0 (15)
(%)

[2:

which we write as 1, = @(/,,). We assume that o is uniquely determined from eqn (15) and
that it is a smooth function of its argument. This means that if 1, < w(4,) for any pair (2,
4,) then the definition eqn (13) gives that 7, < 0.

The relaxed strain-energy function is derived from eqn (12) by replacing 4, by w(4,)
whenever 1, < w(/,), or vice versa if 4, < w(4,). This leads to the explicit definition

07 0<(/:I,‘;12)<]7
Wi, o)), A >1, 7, <ali),
WGy d) = N(M (/) | 42 4 (A1) (16)
W (w(h), 2A2), A <o), 4 >1,
Aﬂ?(;“la)'l)a AL > 0(dy), Ay > w(dy),

from which it can be shown that #, is the quasiconvex form of #”. On taking the principal
Biot stresses with respect to #,, that is ¢, = ¢#7,/04,, then it is easy to show that the
inequalities in eqn (14) are automatically satisfied everywhere. Pipkin (1986b) showed that
the relaxed strain-energy function [eqn (16)] also automatically satisfies several other
conditions necessary for the Legendre-Hadamard condition. For “incompressible” elastic
membranes, which are taken to behave as for an incompressible three-dimensional material
restricted to two-dimensions, the natural width is given by

w(ly) = 212, (17)

In the following sections we will be interested in finding the relationship between the
pressure and the volume under the deformed surface of the membrane. In terms of the
position vector r, the volume V' [r] lying between the membrane surface and some chosen
lower surface is given by, Steigmann (1991),

1 -
Vr] =—J re(r, xry)A-'2dS
3 G()
1
=J Jroa,dS, (18)
3 G(]

where dS = 4'2d0’ df? is the elemental area on the reference surface G,.
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3. GOVERNING EQUATIONS

We consider the same boundary value problem as in Roxburgh ez al. (1995), but this
time we also include the effects of a hydrostatic pressure p. As in this previous paper, in
the reference configuration we introduce cylindrical polar coordinates (R, ©, Z), with
corresponding orthonormal basis (eg, €e, €7), so that the membrane initially occupies the
annular region

R = Reg, (19)
with A < R< B,0 < O < 2x, Z = 0. The membrane is subjected to a radial stretch

r = AR, (20)
so that it occupies the region with a = /y4 < r = A R < JyB = b, and in general we assume
that 4, > 1. The inner rim, r = ¢, 1s then displaced an amount w in the positive Z-direction,
and twisted through a positive angle ¢,, while the outer rim r = b is kept fixed. With the

assumption that the resulting deformation is axisymmetric, we take the deformation to be
of the form

r=u(R)cosp(R)ep+u(R)sin@p(R)es+w(R)eg, 2n
where u (R) is the deformed radius, w (R) is the transverse displacement and @(R) is the

angle of twist of the material circle with undeformed radius R. The boundary conditions
are thus

u(A)y=4igA, u(B)= AyB,
w(Ad) =w,, w(B)=0,
p(A) =@y, @(B)=0. (22)

If we take the Gauss coordinates as
' = R and9*> = O,
it follows, on differentiating eqns (19) and (21) that

Al :Al :eR, A2 =Re@:R2A2,
a, = (ucos @) ez +(usin @)’'eq +w'e,,

a, = —usin peg+ ucos peg, (23)

where d()/dR = ()’. On substituting from eqn (23) into eqns (2) and (5) the corresponding
metric tensors can be derived and yield

a =det(ay) =1’ W’ +w?), A=det(d,) =R, (24)
which allows us to find the unit normal a,, from eqn (3),

— (W' cos peg +w' sin peg —u'e,)

33 =T ( /2+ /’))197
u wo) '~

(25)

Equation (7) gives that the Cauchy—Green stress tensor % has the form
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, . 2o 2
C =W H+wtulp?)eg ®er+ % (er ®eg+eo ®er)+ E;e@ ® eg, (26)

which has eigenvalues satisfying

woo,,
det® = 4242 = e W2 +w?),

.
tr€ = Ai + /73 =u’2+w’2+;(R2qo’2+]). 27N

Note that when no twisting is present, that is ¢’ = 0, then eqn (27) immediately gives
A} = u?/R?* and A3 = u’* + w2, but in the general case no such simplification can be made.
In order to obtain a more manageable form for the governing equations, we set

’

Q=w’+wH'"?, o«=cot™! (%) Y= % (28)

so that
u = Qcosa, w =sing, (29)

and a(R) is thus the angle a tangent line to the meridian, at a material radius R, makes
with the outward radial axis. With this, eqn (27) simplifies to

J=(a/A)'? = Ay =Qp, A1+ =Q+¢*(1+R*p™). (30)
The resultant stress vectors given by eqn (10) become, after some calculation

T' = (D~y*Cla,+ ¥’ ¢'Cla,,
1
RZ

T? = Y’¢'Ca, + - {D—(Q +y*R*¢"*)C}a,, 31

where the constitutive dependence of eqns (31), enters solely through the terms

_tl/;~1_52/22 _/{1f1—/‘1212

C , (32)

- - - bl
A =53 =

where the 1, = dW/d4, are the Biot principal stresses.
In the presence of a hydrostatic pressure p, the equilibrium equation (11) becomes

1 ¢ . 1 ¢
— —(RT )+'E5(T)

R 2R (RT?) +pyQa; = 0, (33)

where the T* are given by eqn (31) and a, is given by eqn (25).

On performing the differentiation in eqn (33) and separating into the e, €o and e,
components, eqn (33) yields three equations of equilibrium. Elimination of the trig-
onometric terms in ¢ between the components in the e, and e directions gives

[’ Rp'D] =0 (34)

and
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[ROD—y> Oy} =y {D(1+R7¢"7) = Q*C} +puw’, (35)

while the component in the e, direction is
[R(D—WC)W’]'Jrg(uZ)' =0, (36)

which can be integrated immediately when p is independent of the deformation, that is
dp/dR = 0. By eliminating p between eqn (35) and (36) and integrating eqn (34), we obtain
the equilibrium equations

Riio'D=M,
R(D—y*Cyw + guz =N,
[R(D—y>C)Q) = y{(1+R?¢>)D—Q>C} cosa, 37)

with M and N suitable constants, where N can be interpreted as the transverse pull-out
force and M the torque, applied at the inner boundary. Alternatively, on combining with
eqn (37), then eqn (37); can be rewritten as

AL +R*¢*)D—Q*C} sina+ puQ

38
R(ID—y2C)Q (38)

o =

We now consider how these equations are modified when the solution lies within a
wrinkled region. As was noted in section 2, wrinkled regions occur whenever
t, = 0% 04, <0 (x =1, 2), but in this present case only one of these 7, can ever become
negative and we label this stress as ¢,. We now replace the standard strain-energy W by its
relaxed form #7, given by eqn (16), with 4, = w(4,). This means that ¢, = 0%",/04, = 0,
whenever 04 /8, < 0. The constitutive terms C and D from eqn (32) in a wrinkled region
thus simplify to

o= e 0l)) e (39)
t (27 —43)
Note that we only replace 4, by w(/,) within the terms directly involving the strain-
energy function. It follows that in a wrinkled region the equilibrium equations are again
given by eqn (37), but with eqn (32) replaced by eqn (39).
Finally in this section, for the deformation given by eqn (21) the volume ¥V[r] contained

between the deformed membrane surface and the Z = 0 plane can be shown from eqns
(18), (25) and (30) to be

2n (8
Vir] = 5 u(u'w—uw)dR. (40)
A

4. NUMERICAL METHOD AND RESULTS

In order to solve the governing equations numerically, we introduce the non-
dimensionalized variables



2048 D. G. Roxburgh

R=2d=2 =1, a=% w="
—'B't —Bﬂ - 9 u—B’ '_B’
- W . ! . ! B
W =—, :ia 2:£’ ﬁ:[L= (41
T Iz u

where p is a material constant, related to the shear modulus, with dimensions of energy per
unit area. The hat notation is subsequently dropped and all quantities are taken to be in
their nondimensional form. These quantities can then be substituted into eqns (28)—(30),
(37) and (38), together with either eqn (32) or (39) as appropriate, to yield a system of first
order ordinary differential equations to be solved. In order to solve this system explicitly,
a particular form for the strain-energy function must be chosen. Here we consider an
“incompressible” Mooney—Rivlin material, with nondimensional form

) = LOUE B+ =3+ (=G +2 7+ 4B =9)) (4D)

where 7, 0 <y < 1 is a constant; for all the particular results considered in this section the
value y = 0.9 was chosen. As was noted previously there may exist several solutions for a
given pressure p, however it is only the small strain solution corresponding to the primary
inflation curve that we are interested in here. To ensure that this particular solution is
found, any problem is first solved in the absence of pressure and then repeatedly solved as
the pressure is incremented from zero. At cach stage the volume enclosed under the
membrane is calculated from eqn (40) as a further verification that no jump in solution
branch occurs.

A shooting method was chosen to solve the governing system of ordinary differential
equations. This approach involves choosing an initial guess for the quantities 4,, 4, and «
at the inner rim R = A. These parameters are then adjusted according to the values of u, w
and ¢ obtained at the outer rim R = 1, as compared with the required boundary conditions
given in eqn (22). This adjustment must be carried out manually as no definitive method
was found to do this automatically. These parameter values are thus continually adjusted
until the boundary conditions in eqn (22) are satistied.

By considering eqn (30), it can be seen that for any solution, we must have

LW(RY> 4y = A(R), A<SR<I (43)

and since, in general, the prestretch 4, > 1, the condition for wrinkled solutions to occur is
22 < @(4,), which for an incompressible material corresponds to

i<l (44)

Figure | displays the typical behaviour of an initially undeformed membrane which is
subject to increasing pressure. Figure 1(a) shows the radial profiles of the deformed surface
for a range of pressures, while Fig. 1(b) displays the pressure-volume relationship. Note
that as the pressure is increased beyond p = 3 the resulting volume increase is much greater.
This increase in volume involves a correspondingly large increase in the principal stretches
induced and even when p = 4 the stretch 4, is significantly greater than 3 near the inner
boundary. As the pressure is then increased beyond p = 4 the resulting value of A, near
R = A is found to increase rapidly beyond any realistic bounds.

In Fig. 2 a typical value for the pressure is chosen, namely p = 2, and the effects of
both twisting and transversely displacing of the inner boundary of the membrane are
displayed. From Figs 2(a) and 2(b) it is clear that while twisting effects do not greatly alter
the profile of the deformed surface, they do have a considerable effect on the principal
stretches induced. This is significant in that it is the principal stretches which determine
whether wrinkling phenomena occur or not. From eqn (44) wrinkled solutions occur when
2125 <1 and in Fig. 2(c) the behaviour of the expression 4,45 over the membrane is
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Fig. 1. Inflation of an initially undeformed flat Mooney-Rivlin membrane, with inner radius
A = 0.25, is considered. Here (a) displays the profiles w against u, with the solid line corresponding
to p = 1, the dotted line p = 2, the dashed line p = 3 and the chained dashed line to p = 4. In (b)
the relationship between the pressure p and the increase in volume AV is displayed.

illustrated. Here, with p = 2, all four of the problems considered have 1,23 > 1 everywhere
so that no wrinkled solutions arise. However, both of the deformations with twisting present
contain wrinkled regions in the unpressurized state, see Roxburgh ez al. (1995) for related
examples, and as the value of p is increased these wrinkled regions are reduced in size as
the corresponding principal stretches are increased. Thus as expected as the membrane is
inflated any wrinkles are smoothed out by the increasing pressure.

Note that as is displayed by Fig. 2(b), the principal stretch 4, takes its largest value at
the inner boundary and then drops rapidly in size as it approaches the outer edge. This is
especially true when twisting effects are present and it is only exaggerated as the pressure
is increased.

Finally in Fig. 3 we consider the effect that a prestretch has on the behaviour of the
inflation of the membrane. The same problem is considered as in Fig. 2, but with a radial
prestretch of A, = 1.25 applied; in particular, Figs 3(a) and 3(b) may be compared with
Figs 2(a) and 2(c), respectively. It is clear that the membrane deforms in a similar way in
both cases, however when the prestretch is applied the principal stretches induced are larger.

SAS 32-14-G



2050

(a)
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Fig. 2. For a given pressure p = 2 the behaviour of an initially unstretched Mooney-Rivlin membrane,
with inner radius 4 = 0.25, is considered. In (a) the profiles w against u are displayed for w, = 0 and
wy = 0.25, where the solid lines correspond to the situation with no twisting present, ¢, = 0, and the
dashed lines to the case with ¢, = 0.5. In (b) 4, is displayed against R, while in (c) 4,12 is displayed
against R, where in both cases the solid lines correspond to w, = 0, ¢, = 0, the dotted lines to wo =0,
@o = 0.5, the chained dashed lines to w, = 0.25, @, = 0 and the dashed lines to w, = 0.25, ¢, = 0.5.
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Fig. 3. For a Mooney—Rivlin membrane, with 4 = 0.25, subjected to a prestretch of 4, = 1.25,

together with a pressure p = 2 and a twist ¢, = 0.5, the profiles w against u/4, are displayed in (a),

while in (b) 4,43 is displayed against R. In both graphs the solid line corresponds to w, = 0 and the
dashed line to w, = 0.25.

From the point of view of this paper, this means that a prestretch acts to inhibit the
occurrence of wrinkling.

5. CONCLUSIONS

The object of this paper is to study a particular problem which necessarily gives rise
to wrinkled solutions by using the formulation, involving relaxed strain-energy functions
and continuously distributed wrinkles, proposed by Pipkin (1986a,b). It is found that the
same numerical procedure can be used to solve for both wrinkled and tense regions, with
only a simple check and change of two constitutive terms required to differentiate between
both possibilities. The typical behaviour of solutions to this problem is displayed graphically
and it is found that, as expected, the introduction of a pressure acts to smooth out any
wrinkled regions that may occur, that is, as the pressure is increased the membrane becomes
tense everywhere.
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